• In total there are 4 users online :: 0 registered, 0 hidden and 4 guests (based on users active over the past 60 minutes)
    Most users ever online was 616 on Thu Jan 18, 2024 7:47 pm

Silicon vs. DNA Microprocessors

Engage in discussions encompassing themes like cosmology, human evolution, genetic engineering, earth science, climate change, artificial intelligence, psychology, and beyond in this forum.
Forum rules
Do not promote books in this forum. Instead, promote your books in either Authors: Tell us about your FICTION book! or Authors: Tell us about your NON-FICTION book!.

All other Community Rules apply in this and all other forums.
User avatar
bionov
Agrees that Reading is Fundamental
Posts: 285
Joined: Mon Jan 28, 2013 7:14 pm
11
Location: Sierra Foothills, CA
Has thanked: 1 time
Been thanked: 25 times
Contact:

Silicon vs. DNA Microprocessors

Unread post

Silicon microprocessors have been the heart of the computing world for more than 40 years. In that time, manufacturers have crammed more and more electronic devices onto their microprocessors. In accordance with Moore's Law, the number of electronic devices put on a microprocessor has doubled every 18 months. Moore's Law is named after Intel founder Gordon Moore, who predicted in 1965 that microprocessors would double in complexity every two years. Many have predicted that Moore's Law will soon reach its end, because of the physical speed and miniaturization limitations of silicon microprocessors.
DNA computers have the potential to take computing to new levels, picking up where Moore's Law leaves off. There are several advantages to using DNA instead of silicon:
• As long as there are cellular organisms, there will always be a supply of DNA.
• The large supply of DNA makes it a cheap resource.
• Unlike the toxic materials used to make traditional microprocessors, DNA biochips can be made cleanly.
• DNA computers are many times smaller than today's computers.
DNA's key advantage is that it will make computers smaller than any computer that has come before them, while at the same time holding more data. One pound of DNA has the capacity to store more information than all the electronic computers ever built; and the computing power of a teardrop-sized DNA computer, using the DNA logic gates, will be more powerful than the world's most powerful supercomputer. More than 10 trillion DNA molecules can fit into an area no larger than 1 cubic centimeter (0.06 cubic inches). With this small amount of DNA, a computer would be able to hold 10 terabytes of data, and perform 10 trillion calculations at a time. By adding more DNA, more calculations could be performed.
Unlike conventional computers, DNA computers perform calculations parallel to other calculations. Conventional computers operate linearly, taking on tasks one at a time. It is parallel computing that allows DNA to solve complex mathematical problems in hours, whereas it might take electrical computers hundreds of years to complete them.
The first DNA computers are unlikely to feature word processing, e-mailing and solitaire programs. Instead, their powerful computing power will be used by national governments for cracking secret codes, or by airlines wanting to map more efficient routes.
From article on site “How Stuff Work”:
http://computer.howstuffworks.com/dna-computer.htm
Post Reply

Return to “Science & Technology”