Online reading group and book discussion forum
  HOME FORUMS BOOKS LINKS DONATE ADVERTISE CONTACT  
View unanswered posts | View active topics It is currently Sat Nov 22, 2014 10:27 pm

<< Week of November 22, 2014 >>
Saturday Sunday Monday Tuesday Wednesday Thursday Friday
22 Day Month

23 Day Month

24 Day Month

25 Day Month

26 Day Month

27 Day Month

28 Day Month





Post new topic Reply to topic  [ 11 posts ] • Topic evaluate: Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average. 
Global Brain: Chapter 4 - 5 - 6 Discussion 
Author Message
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
BookTalk.org Hall of Fame

BookTalk.org Owner
Diamond Contributor 3

Joined: May 2002
Posts: 14170
Location: Florida
Thanks: 2123
Thanked: 810 times in 643 posts
Gender: Male
Country: United States (us)
Highscores: 8

Post Global Brain: Chapter 4 - 5 - 6 Discussion
Global Brain consists of 21 chapters total, so I'm creating 7 seperate threads breaking the book into 3 chapter segments. Hopefully this format will keep the discussion somewhat organized and on track. You do not need to keep your discussions within these 7 threads.

Edited by: Chris OConnor  at: 10/30/05 4:32 pm



Mon Jan 13, 2003 1:24 pm
Profile Email YIM WWW
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Thread Flintstone

Silver Contributor

Joined: Jul 2002
Posts: 898
Location: Cincinnati, OH
Thanks: 17
Thanked: 175 times in 132 posts
Gender: Male

Post Re: Global Brain: Chapter 4 - 5 - 6 Discussion
Chapter 4 introduces the elements of a collective learning machine.

- Conformity enforcers
- Diversity generators
- Inner judges
- Resource shifters
- Intergroup tournaments

Bloom uses this five part system to describe how groups learn.




Sat Feb 08, 2003 10:24 pm
Profile WWW
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Thread Flintstone

Silver Contributor

Joined: Jul 2002
Posts: 898
Location: Cincinnati, OH
Thanks: 17
Thanked: 175 times in 132 posts
Gender: Male

Post Re: Global Brain: Chapter 4 - 5 - 6 Discussion
Chapter 4 also introduces the work of Eshel Ben-Jacobs, a physicist who studied bacteria and found they design genome changes to solve problems.

Quote:
Ben Jacobs wrote in the queen of physics journals, Physica A, that the genome can "recognize difficulties and formulate problems," "collect and process information, both about internal state(s) and external conditions (including the state of other bacteria)," and arrive at an evaluation of current needs. What's more, the genetic bundle seemed to accomplish something even compouters cannot achieve. Said Ben-Jacob, "The genome makes calculations and changes itself according to the outcome." It activates genes which were in limbo, deactivates others which had been going full steam, copies some, moves them to new locations, lengthens or shortens old strings, and comes up with fresh combinations of genetc code. It accomplishes a feat analogous to what William Shakespeare did when he rearranged existing words and phrases to write a play. Concluded Ben-Jacob, in bacteria's case "evolutionary progress is not a result of successful accumulation of mistakes, but is rather the outcome of designed creative processes."


Bloom describes Escherichia coli bacteria successfully mutating in order to digest a formerly inedible substance.
Quote:
An individual bacterium can crank nourishment out of this unpalatable medication only if it undergoes a step-by-step sequence of two genetic breakthroughs, one of which entails taking a giant step backward. The odds of pulling this off through random mutation are less than 1 in 10,000,000,000,000,000,000,000 - or, to put it in English, more than 10 billion trillion to one. Yet E. coli consistently manage it.

Ben-Jacob claims the bacteria accomplish this by functioning as a learning machine, basic activites we associate with human beings. (pgs. 45 - 46 in hardback)

Eshel Ben-Jacob and the Bacterial Cybernetics Group

Designed creative processes? Amazing stuff! This could have huge consequences for evolution - I wonder what the biology experts here make of this...

Edited by: LanDroid at: 2/8/03 11:08:03 pm



Sat Feb 08, 2003 10:49 pm
Profile WWW
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Intelligent

Bronze Contributor 2

Joined: Oct 2002
Posts: 554
Location: Saint Louis
Thanks: 0
Thanked: 0 time in 0 post
Gender: Male
Country: United States (us)

Post Re: Global Brain: Chapter 4 - 5 - 6 Discussion
Quote:
Designed creative processes? Amazing stuff! This could have huge consequences for evolution - I wonder what the biology experts here make of this...
I make of it that we're dealing with nuts who make Behe look mainstream. Hackles went up when I referred to Global Brain as religion rather than science; but what exactly does "designed" mean? It means "god did it".




Sun Feb 09, 2003 9:13 am
Profile Email
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Thread Flintstone

Silver Contributor

Joined: Jul 2002
Posts: 898
Location: Cincinnati, OH
Thanks: 17
Thanked: 175 times in 132 posts
Gender: Male

Post Re: Global Brain: Chapter 4 - 5 - 6 Discussion
Sheesh, there's no need to jump from "designed" to "God", read it a little closer.

Quote:
A "creative net" of bacteria, unlike a man-made machine, can invent a new instruction set with which to beat an unfamiliar challenge. Some colony members feel out the new environment learning all they can. Others "puzzle" over the genome like race-car designers tinkering with an engine whose power they are determined to increase. Yet others collect the incoming "ideas" passed along by their sisters and work together to alter the use of existing genetic parts or to turn them into something new. The "super-mind", to use Ben-Jacob's term even sucks in lessons from other colonies and, as Ben-Jacob explains, "designs and constructs a new and more advanced genome," thus "performing a genomic leap." Such is the power of what Ben-Jacob calls a bacterial "creative web". (p. 45-46)


The bacterial communication/learning/creative network designed the changes itself. I don't see how one can find religion in a physicist making these statements. On the contrary, if these systemic activities are widespread and more effective than random mutation, it bolsters the theory of evolution.

Edited by: LanDroid at: 2/9/03 5:45:42 pm



Sun Feb 09, 2003 5:57 pm
Profile WWW
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Thread Flintstone

Silver Contributor

Joined: Jul 2002
Posts: 898
Location: Cincinnati, OH
Thanks: 17
Thanked: 175 times in 132 posts
Gender: Male

Post Re: Global Brain: Chapter 4 - 5 - 6 Discussion
Chapter 6 re-introduces the meme. Richard Dawkins describes the meme as "a unit of imitation", which belongs exclusively to human culture. Bloom expands this and states memes can be verbal and behavioral. He makes a strong case that animals learn by imitation and that their behavior can vary from region to region due to local experience.

Let the wordsmithing begin. :\ If you take the word "meme" to mean ideas or behavior that is observed and repeated, it isn't so controversial. The argument seems to be whether or not memes have a discrete existence like a virus, which is a bit of a distraction from the discussion.

Edited by: LanDroid at: 2/9/03 9:33:14 pm



Sun Feb 09, 2003 10:03 pm
Profile WWW


Post He he, oops, Behe
The whole Global Brain idea, while interesting in a kind of abstractly sci-fi kind of way, does strike me as metaphysical (how can its central thesis ever be tested, falsified?) or, in the alternative, quasi-religious (design indeed! Has he forgotten that "natural selection" includes the word "selection"? -- meaning that fitness is a process of successive change that mimics, but is fundamentally different from, design?).

I think that pieces like the one below are better starts to understanding complex systems:



From the issue dated February 14, 2003



Unraveling the Mysteries of the Connected Age
By DUNCAN J. WATTS

What is it about complex, connected systems that makes them so hard to understand? How is it that assembling a large collection of components into a system results in something altogether different from a large collection of components? How do populations of fireflies flashing, crickets chirping, or pacemaker cells beating all manage to synchronize their rhythms without the aid of a central conductor? How do small outbreaks of disease become epidemics, or new ideas become crazes? How do wild speculative bubbles emerge out of the investment strategies of otherwise sensible individuals, and when they burst, how does their damage spread throughout the financial system? How vulnerable are large infrastructure networks like the power grid or the Internet to random failures, or even deliberate attack? And do norms and conventions evolve and sustain themselves -- or alternatively get replaced -- in human societies?

As different as all these questions appear, they are all versions of the same question -- how does individual behavior aggregate to collective behavior? As simply as it can be asked, this is one of the most fundamental and pervasive questions in all of science. A human brain, for example, is in one sense a trillion neurons connected in a big electrochemical lump. But to each of us who has one, a brain is clearly much more, exhibiting properties like consciousness, memory, and personality, whose nature cannot be explained simply in terms of aggregations of neurons.

What makes the problem hard, and what makes complex systems complex, is that the parts making up the whole don't sum up in any simple fashion. Rather, they interact with each other, and in interacting, even quite simple components can generate bewildering behavior. The recent sequencing of the human genome revealed that the basic code of all human life consists of only about 30,000 genes -- many fewer than anyone had guessed. So whence comes all the complexity of human biology? Clearly it is not from the complexity of the individual elements of the genome, which could scarcely be any simpler; nor does it come from their number, which is barely any greater than it is for the humblest of organisms. Rather it derives from the simple fact that genetic traits are rarely expressed by single genes, but by combinations.

What then of human systems? If the interactions of mere genes can confound the best minds in biology, what hope do we have of understanding combinations of far more complex components like people in a society or companies in an economy? Surely the interactions of entities which are themselves complex would produce complexity of a truly intractable kind. Fortunately, as capricious, confusing, and unpredictable as individual humans typically are, when you put many of them together, it is sometimes the case that we can understand the basic organizing principles while ignoring many of the complicating details.

Sometimes, therefore, the interactions of individuals in a large system can generate greater complexity than the individuals themselves display, and sometimes much less. Either way, the particular manner in which they interact can have profound consequences for the sorts of new phenomena that, from population genetics to global synchrony and political revolutions, can emerge at the level of groups, systems, and populations. It is one thing to say this, however, and quite another matter altogether to understand it precisely. In particular, what is it about the patterns of interactions between individuals in a large system that we should pay attention to? No one has the answer yet, but in recent years a growing group of researchers has been chasing a promising new lead. And out of this work, which in itself builds upon decades of theory and experiment in every field from physics to sociology, is coming a new science, the science of networks.

In a way, nothing could be simpler than a network. Stripped to its bare bones, a network is nothing more than a collection of objects connected to each other in some fashion. On the other hand, the sheer generality of the term network makes it slippery to pin down precisely, and this is one reason why a science of networks is an important undertaking. We could be talking about people in a network of friendships, or a large organization, routers along the backbone of the Internet, or neurons firing in the brain. All these systems are networks, but all are completely distinct in one sense or another. By constructing a language for talking about networks that is precise enough to say not only what a network is, but what kinds of different networks there are in the world, the science of networks is lending the concept real analytic power.

Understanding networks, however, is an extraordinarily difficult task, not just because it is inherently complicated, but because it requires different kinds of specialized knowledge that are usually segregated according to academic specialty and even discipline. Physicists and mathematicians have at their disposal mind-blowing analytical and computational skills, but typically they don't spend a whole lot of time thinking about individual behavior, institutional incentives, or cultural norms. Sociologists, psychologists, and anthropologists, on the other hand, do. And in the past half-century or so they have thought more deeply and carefully about the relationship between networks and society than anyone else -- thinking which is now turning out to be relevant to a surprising range of problems, from biology to engineering. But lacking the glittering tools of their cousins in the mathematical sciences, the social scientists have been more or less stalled on their grand project for decades.

If it is to succeed, the new science of networks must bring together from all the disciplines the relevant ideas, and the people who understand them. The science of networks must become, in short, a manifestation of its own subject matter, a network of scientists collectively solving problems that cannot be solved by any single individual or even any single discipline. It's a daunting task, made all the more awkward by the longstanding barriers separating scientists themselves. Our languages are very different, and we often have difficulty understanding one another. Our approaches are different too, so each of us has to learn not only how the others speak, but how they think. But it is happening, and the past few years have seen an explosion in research and interest across the world in search of a new paradigm with which to describe, explain, and ultimately understand the networked world. We are not there yet, not by a long shot, but we are making some exciting progress.

The Island of Manhattan. Twenty-two miles long and less than five miles wide, it is, on the grand scale of the world, a speck, a jewel in the mouth of the Hudson River as it pours into the North Atlantic. Up close, it is more like a vast, roaring playground. Home to nearly a million people and host to millions more every day, it is, and has been for more than a century, Gotham, the quintessential metropolis, the city that never sleeps.

But from a scientific point of view, it is something of an enigma. Even on a daily basis, millions of people, along with the private and commercial activity they generate, consume an awful lot of stuff -- food, water, electricity, gas, and a vast range of materials from plastic wrapping to steel girders and Italian fashion. They also discharge an enormous quantity of waste in the form of garbage, recyclables, sewage, and wastewater; collectively they emit so much raw heat energy, they create their own microclimate. Yet almost nothing that the city requires in order to sustain itself is actually produced, or even stored, within its own precincts; nor can it satisfy any of its own disposal needs.

Another way to understand Manhattan, therefore, is as a nexus of flows, the swirling convergence of people, resources, money, and power. And if those flows stop, even temporarily, the city starts to die, starved for nourishment or choking on its own excrement. New Yorkers are renowned for their brash confidence, projecting an air of capability even in the most trying circumstances. But really they are captives of the very systems that make life in the city so convenient.

What would happen if this infrastructure, or even part of it, were to stop functioning? Can it stop functioning? And who is in a position to ensure that it doesn't? Who, in other words, is in charge? Like many simple questions to do with complex systems, this one lacks a definitive answer, but the short version is no one. In reality, there is not even such a thing as a single infrastructure to be in charge of. Rather what exists is a Byzantine mishmash of overlapping networks, organizations, systems, and governance structures, mixing private and public, economics, politics, and society.

No single entity coordinates this bewilderingly complicated system, and no one understands it. Frankly, it is a miracle that it works at all. If this is not a nerve-wracking thought, it really should be. Complex, connected systems can sometimes display tremendous robustness in the face of adversity and sometimes display shocking fragility. And when the system is as complicated as a large, densely populated, heavily built-up city, as vital to the lives of millions of people, and as central to the economy of a global superpower, contemplating its potential break points is more than idle speculation. So how robust is New York?

On September 11, 2001, we began to find out. The events of that day illustrate many of the paradoxes encountered in the study of networks: how it is that connected systems can be at once robust and fragile; how apparently distant events can be closer than we think; how, at the same time, we can be insulated even from what is happening nearby; and how the routine can prepare us for the exceptional. The attacks of September 11 exposed, in a way that only true disasters can, the hidden connections in the complex architecture of modern life. And from that perspective, we still have some lessons to learn.

One important lesson emerged from the severe organizational crisis that was precipitated by what was essentially a physical attack. The mayor's emergency command bunker was destroyed when Number 7 World Trade Center collapsed soon after the twin towers, and by 10 a.m. the nearby police command center had lost every single phone line, along with its cellular-phone, e-mail, and pager service. Faced with a completely unexpected and unprecedented catastrophe, with almost no reliable information available, and with the threat of subsequent attacks looming large, the city needed to coordinate two enormous operations -- one rescue, and the other security -- simultaneously. And less than an hour after the emergency began, the very infrastructure that had been designed to manage emergencies had been thrown into disarray.

But somehow they did it. In what was, under the circumstances, an incredibly orderly response, the mayor's office, the police and fire departments, the Port Authority, the various state and federal emergency agencies, dozens of hospitals, hundreds of businesses, and thousands of volunteers, turned lower Manhattan from a war zone into a recovery site in less than 24 hours. In the rest of the city, meanwhile, everything continued to operate in a way that was so normal, it was eerie. The power was still on, the trains still ran, and up at Columbia, you could still go and have a nice lunch at one of the restaurants on Broadway. For all the lockdown security on the island that day, nearly everybody outside the immediately devastated area got home that night, and deliveries of supplies and collection of garbage resumed almost as normal the next day.

A few months after September 11, I heard a remarkable story told by a woman from Cantor Fitzgerald -- the debt-trading firm that lost 700 of its 1,000 employees in the collapse of the south tower. Despite (or perhaps because of) the unfathomable trauma they had just suffered, the remaining employees decided by the next day that they would try to keep the firm alive -- a decision made all the more incredible by the daunting practical hurdles they needed to overcome. First, unlike the equity markets, the debt markets were not based at the Stock Exchange and had not closed. So if it was to survive, Cantor Fitzgerald needed to be up and running within the next 48 hours. Second, while their carefully constructed contingency plan had called for remote backups of all their computer and data systems, there was one eventuality they had not anticipated: Every single person who knew the passwords had been lost. And the reality is that if no one knows the passwords, the data are as good as gone, at least on the time scale of two days.

So what they did was this: They sat around in a group and recalled everything they knew about their colleagues, everything they had done, everywhere they had been, and everything that had ever happened between them. And they managed to guess the passwords. This story is a little hard to believe, but it is true. And it illustrates, in a particularly dramatic way, that recovery from a disaster is not something that can be planned for in an event-specific manner; nor can it be centrally coordinated at the time of the disaster itself. Just as with the mayor's office, in a true disaster, the center is the first part of the system to be overwhelmed. The system's survival therefore depends on a distributed network of pre-existing ties and ordinary routines that binds an organization together across all its scales.

What was really so remarkable about the robustness of downtown New York was that the survival and recovery mechanisms used by people, companies, and agencies alike were not remarkable at all. In the immediate aftermath, nobody knew what was going on, and nobody knew how they were supposed to respond. So they did the only thing they could do: They followed their routines, and adapted them as best they could to allow for the dramatically altered circumstances. From an organizational perspective, therefore, what we should learn from the recovery effort is that the exceptional is really all about the routine.

What can the science of networks tell us about the properties of complex systems, and especially their strengths and weaknesses? The honest answer, unfortunately, is not too much -- yet. It is important to recognize that, despite 50 years of percolating in the background, the science of networks is only just getting off the ground. If this were structural engineering, we would still be working out the rules of mechanics -- the basic equations governing the bending, stretching, and breaking of solids. The vast storehouse of applied knowledge to which professional engineers have access -- the tables, handbooks, computer-design packages, and heavily tested rules of thumb -- are at best on the distant horizon. But what the science of networks can do is give us a new way of thinking about familiar problems -- a way that has already yielded some surprising insights.

First, the science of networks has taught us that distance can be deceiving. The first evidence in support of this observation came in the late 1960s in the form of a remarkable experiment conducted by the social psychologist Stanley Milgram. Milgram devised an innovative message-passing technique in which he gave a few hundred randomly selected people from Boston and Omaha letters to be sent to a single target person -- a stockbroker who worked in Boston. But the letters came with an unusual stipulation: They could only be sent to a personal friend, preferably one "closer" to the target than the current holder. Each subsequent recipient received the same instructions, thereby forcing the letters to traverse a chain of social acquaintances from initial sender to target. Milgram's question was, how many people would be in a typical chain? The answer was six -- a surprising result that led to the famous phrase (and John Guare's 1990 play) "Six Degrees of Separation."

That someone on the other side of the world, with little in common with you, can be reached through a short chain of network ties -- through only six degrees -- is an aspect of the social world that has fascinated generation after generation. Now the science of networks gives us an explanation in terms of the multidimensional nature of social identity -- we tend to associate with people like ourselves, but we have multiple, independent ways of being alike. And because we know not only who our friends are, but also what kind of people they are, even very large networks can be navigated in only a few links.

The second major insight we can gain from the science of networks is that, in connected systems, cause and effect are related in a complicated and often quite misleading way. Sometimes small shocks can have major implications. Just as a single skier can unleash an avalanche in the mountains, so too can influences that are initially small trigger, in just the right network, a cascade of events that can propagate essentially without bound. Other times even major shocks can be absorbed with remarkably little disruption. In 1997, for example, a fire destroyed a key plant of the Toyota company, halting the production of more than 15,000 cars a day and affecting more than 200 companies whose job it is to supply Toyota with everything from electronic components to seat covers. Without question, this was a first-class catastrophe. But what happened next was every bit as dramatic as the disaster itself. In an astonishing coordinated response, and with very little direct oversight by Toyota, those same companies managed to reproduce -- in several completely different ways -- the lost components, and did so within three days of the fire. A week after that, the volume of cars rolling off the production line was back at its pre-disaster level. Because Toyota managed to escape the crisis relatively unscathed, the whole incident was largely forgotten. But it could easily have failed, as could the next company faced with a similar crisis. By accounting for the networks of connections between individual decisions or events, we can see that predicting the future based on previous outcomes -- even in situations that appear indistinguishable from those in the past -- is an unreliable business.

Finally, by helping us to understand better the relationship between cause and effect that pertains to complex, connected systems, the science of networks teaches us a third lesson: that such systems, from power grids to businesses, and even entire economies, are both more vulnerable and more robust than populations of isolated entities. Networks share resources and distribute loads, but they also spread disease and transmit failure -- they are both good and bad. But unless we can understand exactly how connected systems are connected, we cannot predict how they will behave. And unless we know what kind of behavior we are trying to understand, we don't even know what it is about the network that is supposed to matter. In this manner, the science of networks may not only provide deep theoretical insight, but also yield practical solutions to currently intractable problems.

Duncan J. Watts is an assistant professor of sociology at Columbia University and an external faculty member of the Santa Fe Institute. This essay is adapted from Six Degrees: The Science of a Connected Age, to be published this month by W.W. Norton & Co.


--------------------------------------------------------------------------------
chronicle.com
Section: The Chronicle Review
Volume 49, Issue 23, Page B7

--------------------------------------------------------------------------------

Easy-to-print version

E-mail this story




--------------------------------------------------------------------------------
Copyright



Thu Feb 13, 2003 4:07 pm
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Intelligent

Bronze Contributor 2

Joined: Oct 2002
Posts: 554
Location: Saint Louis
Thanks: 0
Thanked: 0 time in 0 post
Gender: Male
Country: United States (us)

Post Networks
Cool




Fri Feb 14, 2003 5:21 pm
Profile Email
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
BookTalk.org Hall of Fame

BookTalk.org Owner
Diamond Contributor 3

Joined: May 2002
Posts: 14170
Location: Florida
Thanks: 2123
Thanked: 810 times in 643 posts
Gender: Male
Country: United States (us)
Highscores: 8

Post Re: Networks
rielmajr

from the article you posted...

Quote:
...constructing a language for talking about networks that is precise enough to say not only what a network is, but what kinds of different networks there are in the world, the science of networks is lending the concept real analytic power.

Blooms seems to opt for langauge that is not precise and almost begs to be challenged. Once again, had Bloom used network or web of life or system many people on this board would have had less of an issue with his general thesis.

Quote:
Understanding networks, however, is an extraordinarily difficult task, not just because it is inherently complicated, but because it requires different kinds of specialized knowledge that are usually segregated according to academic specialty and even discipline.

LanDroid made this point in the thread about Chapters 1, 2 and 3 quite clearly. No one scientist can be expected to fully understand all of the fields or areas of study necessary to understand a network or global brain. Bloom stands on the shoulders of those giants in thier respective specialities.

Again...

Quote:
The science of networks must become, in short, a manifestation of its own subject matter, a network of scientists collectively solving problems that cannot be solved by any single individual or even any single discipline.

When the author of this article refers to the "science of networks" I'm wondering if this could also be called "systems theory." I mentioned this somewhere on BookTalk in the past, but I'll do so again. There is an incredible movie called "MindWalk" that I highly recommend to you all. The movie is about 3 very different people from varied backgrounds having a fascinating conversation as they walk along the beach. One is a poet, one a politician and one a scientist. This is the only movie I've ever seen in my life that intrigued me enough to watch two times in the very same day.

Chris






Edited by: Chris OConnor  at: 10/30/05 4:32 pm



Sun Feb 16, 2003 10:50 pm
Profile Email YIM WWW
User avatar
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
BookTalk.org Hall of Fame

BookTalk.org Owner
Diamond Contributor 3

Joined: May 2002
Posts: 14170
Location: Florida
Thanks: 2123
Thanked: 810 times in 643 posts
Gender: Male
Country: United States (us)
Highscores: 8

Post Re: Networks
From Chapter 6:

The very first paragraph in Ch. 6 holds an amazing story of how a bird species in England rapidly learned how to solve the puzzle of how to penetrate aluminum caps on milk containers.

Quote:
A few blue tits figured out how to pierce the flimsy metal so they could sip the liquid's crown of unhomogenized cream. This innovation spread so rapidly that seemingly overnight tits the length and breadth of the British Isles were fattening their bellies via dairy robbery.

Does anyone else find that fascinating? I imagine some high-IQ'd bird slamming his beak through the aluminum in front of his buddies while they took notes and then flew off to share the nifty trick with the rest of the gang. LOL

Edited by: Chris OConnor  at: 10/30/05 4:32 pm



Sun Feb 16, 2003 11:05 pm
Profile Email YIM WWW
Years of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membershipYears of membership
Intelligent

Bronze Contributor 2

Joined: Oct 2002
Posts: 554
Location: Saint Louis
Thanks: 0
Thanked: 0 time in 0 post
Gender: Male
Country: United States (us)

Post Re: Birds
Bloom, via Chris:
Quote:
This innovation spread so rapidly that seemingly overnight
again, the language of a politician instead of a scientist. What's wrong with "in only twelve days, 50% of the birds 30 km away were observed doing the same behaviour?
BTW, I think we are realizing that bird intelligence has been dramatically underrated. Observational learning is the only plausible explanation for this spread, and dogs, whose intelligence we so praise, have very limited or no (according to who you believe) ability to learn by observation. There was a piece on TV showing crows dropping nuts in front of cars to open them... at a traffic light, so that traffic would stop and they could retrieve their booty. How many humans, unfamiliar with cars and traffic lights, would observe the pattern and put it to use?




Mon Feb 17, 2003 8:10 am
Profile Email
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 11 posts ] • Topic evaluate: Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average.Evaluations: 0, 0.00 on the average. 



Who is online

Users browsing this forum: No registered users and 0 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:

Recent Posts 
If you were God, would you give humanity moral free will?

Sat Nov 22, 2014 10:11 pm

Flann 5

Do you have a quote to share? Funny? Positive? Thought Provoking?

Sat Nov 22, 2014 9:46 pm

Movie Nerd

"What Book Changed Your Mind?"

Sat Nov 22, 2014 9:15 pm

Hal Henry

Renewable energy - the old chestnut, puréed

Sat Nov 22, 2014 9:13 pm

LanDroid

Why is there something and not nothing?

Sat Nov 22, 2014 9:02 pm

Hal Henry

"Logical Fallacies: The Key to Proving Christians Wrong"

Sat Nov 22, 2014 6:45 pm

ManofEcstasy

Is God the epitome of both good and evil?

Sat Nov 22, 2014 6:30 pm

ManofEcstasy

Why Do So Many Have Trouble Believing In Evolution?

Sat Nov 22, 2014 6:09 pm

Movie Nerd

COSMOS - Episode 5 (more quasi subliminal propaganda)

Sat Nov 22, 2014 5:52 pm

Chris OConnor

How do you read a boring book?

Sat Nov 22, 2014 5:11 pm

Movie Nerd

What are you reading right now?

Sat Nov 22, 2014 5:10 pm

Movie Nerd

The "Recent Topics" block now shows 20 posts instead of 10

Sat Nov 22, 2014 4:59 pm

Chris OConnor

How important is the news?

Sat Nov 22, 2014 4:55 pm

Crystalline

Faith closes the mind. It is pure idol worship.

Sat Nov 22, 2014 4:33 pm

Interbane

Back! Will Be More Active

Sat Nov 22, 2014 4:18 pm

PoeticJustin

Many thanks for having me, Joe

Sat Nov 22, 2014 3:37 pm

Chris OConnor

Wearable Fitness and Health Tracking Devices

Sat Nov 22, 2014 2:01 pm

Crystalline

Evolution and the 2nd law of thermodynamics

Sat Nov 22, 2014 10:49 am

johnson1010

Writing is the light of imagination playing over shadow of thoughts

Sat Nov 22, 2014 6:49 am

khaled Talib

NEW MEMOIR - LOVE OF LIFE - A MIRACULOUS STORY!

Sat Nov 22, 2014 4:16 am

sokhom


BookTalk.org Links 
Forum Rules & Tips
Frequently Asked Questions
BBCode Explained
Info for Authors & Publishers
Featured Book Suggestions
Author Interview Transcripts
Be a Book Discussion Leader!
    

Love to talk about books but don't have time for our book discussion forums? For casual book talk join us on Facebook.

Featured Books

Poll

Yes  66%  [2]
No  33%  [1]
Total votes: 3

Books by New Authors


Top Posters

Of all time: Chris OConnor (14170), Interbane (5578), DWill (4962), stahrwe (4610), Robert Tulip (4231), Mr. Pessimistic (3542), johnson1010 (3326), geo (3254), ant (3061), Penelope (2969), Saffron (2859), Suzanne (2474), Frank 013 (2021), Dissident Heart (1796), bleachededen (1680), President Camacho (1614), Ophelia (1543), Dexter (1448), tat tvam asi (1298), youkrst (1287)

Of the last 24 hrs: Movie Nerd (20), Chris OConnor (17), ant (15), lehelvandor (15), geo (11), ManofEcstasy (9), johnson1010 (8), Crystalline (6), Dexter (5), LanDroid (5), Interbane (4), Hal Henry (4), PoeticJustin (4), danimorg62 (4), sokhom (2), Cattleman (2), Robert Tulip (1), DWill (1), heledd (1), Gnostic Bishop (1)




BookTalk.org is a free book discussion group or online reading group or book club. We read and talk about both fiction and non-fiction books as a group. We host live author chats where booktalk members can interact with and interview authors. We give away free books to our members in book giveaway contests. Our booktalks are open to everybody who enjoys talking about books. Our book forums include book reviews, author interviews and book resources for readers and book lovers. Discussing books is our passion. We're a literature forum, or reading forum. Register a free book club account today! Suggest nonfiction and fiction books. Authors and publishers are welcome to advertise their books or ask for an author chat or author interview.


Navigation 
MAIN NAVIGATION

HOMEFORUMSBOOKSTRANSCRIPTSOLD FORUMSADVERTISELINKSFAQDONATETERMS OF USEPRIVACY POLICY

BOOK FORUMS FOR ALL BOOKS WE HAVE DISCUSSED
Atheist Mind, Humanist Heart - by Lex Bayer and John FigdorSense and Goodness Without God - by Richard CarrierFrankenstein - by Mary ShelleyThe Big Questions - by Simon BlackburnScience Was Born of Christianity - by Stacy TrasancosThe Happiness Hypothesis - by Jonathan HaidtA Game of Thrones - by George R. R. MartinTempesta's Dream - by Vincent LoCocoWhy Nations Fail - by Daron Acemoglu and James RobinsonThe Drowning Girl - Caitlin R. KiernanThe Consolations of the Forest - by Sylvain TessonThe Complete Heretic's Guide to Western Religion: The Mormons - by David FitzgeraldA Portrait of the Artist as a Young Man - by James JoyceThe Divine Comedy - by Dante AlighieriThe Magic of Reality - by Richard DawkinsDubliners - by James JoyceMy Name Is Red - by Orhan PamukThe World Until Yesterday - by Jared DiamondThe Man Who Was Thursday - by by G. K. ChestertonThe Better Angels of Our Nature by Steven PinkerLord Jim by Joseph ConradThe Hobbit by J. R. R. TolkienThe Hitchhiker's Guide to the Galaxy by Douglas AdamsAtlas Shrugged by Ayn RandThinking, Fast and Slow - by Daniel KahnemanThe Righteous Mind - by Jonathan HaidtWorld War Z: An Oral History of the Zombie War by Max BrooksMoby Dick: or, the Whale by Herman MelvilleA Visit from the Goon Squad by Jennifer EganLost Memory of Skin: A Novel by Russell BanksThe Structure of Scientific Revolutions by Thomas S. KuhnHobbes: Leviathan by Thomas HobbesThe House of the Spirits - by Isabel AllendeArguably: Essays by Christopher HitchensThe Falls: A Novel (P.S.) by Joyce Carol OatesChrist in Egypt by D.M. MurdockThe Glass Bead Game: A Novel by Hermann HesseA Devil's Chaplain by Richard DawkinsThe Hero with a Thousand Faces by Joseph CampbellThe Brothers Karamazov by Fyodor DostoyevskyThe Adventures of Huckleberry Finn by Mark TwainThe Moral Landscape by Sam HarrisThe Decameron by Giovanni BoccaccioThe Road by Cormac McCarthyThe Grand Design by Stephen HawkingThe Evolution of God by Robert WrightThe Tin Drum by Gunter GrassGood Omens by Neil GaimanPredictably Irrational by Dan ArielyThe Wind-Up Bird Chronicle: A Novel by Haruki MurakamiALONE: Orphaned on the Ocean by Richard Logan & Tere Duperrault FassbenderDon Quixote by Miguel De CervantesMusicophilia by Oliver SacksDiary of a Madman and Other Stories by Nikolai GogolThe Passion of the Western Mind by Richard TarnasThe Left Hand of Darkness by Ursula K. Le GuinThe Genius of the Beast by Howard BloomAlice's Adventures in Wonderland by Lewis Carroll Empire of Illusion by Chris HedgesThe Sound and the Fury by William Faulkner The Extended Phenotype by Richard DawkinsSmoke and Mirrors by Neil GaimanThe Selfish Gene by Richard DawkinsWhen Good Thinking Goes Bad by Todd C. RinioloHouse of Leaves by Mark Z. DanielewskiAmerican Gods: A Novel by Neil GaimanPrimates and Philosophers by Frans de WaalThe Enormous Room by E.E. CummingsThe Picture of Dorian Gray by Oscar WildeGod Is Not Great: How Religion Poisons Everything by Christopher HitchensThe Name of the Rose by Umberto Eco Dreams From My Father by Barack Obama Paradise Lost by John Milton Bad Money by Kevin PhillipsThe Secret Garden by Frances Hodgson BurnettGodless: How an Evangelical Preacher Became One of America's Leading Atheists by Dan BarkerThe Things They Carried by Tim O'BrienThe Limits of Power by Andrew BacevichLolita by Vladimir NabokovOrlando by Virginia Woolf On Being Certain by Robert A. Burton50 reasons people give for believing in a god by Guy P. HarrisonWalden: Or, Life in the Woods by Henry David ThoreauExile and the Kingdom by Albert CamusOur Inner Ape by Frans de WaalYour Inner Fish by Neil ShubinNo Country for Old Men by Cormac McCarthyThe Age of American Unreason by Susan JacobyTen Theories of Human Nature by Leslie Stevenson & David HabermanHeart of Darkness by Joseph ConradThe Stuff of Thought by Stephen PinkerA Thousand Splendid Suns by Khaled HosseiniThe Lucifer Effect by Philip ZimbardoResponsibility and Judgment by Hannah ArendtInterventions by Noam ChomskyGodless in America by George A. RickerReligious Expression and the American Constitution by Franklyn S. HaimanDeep Economy by Phil McKibbenThe God Delusion by Richard DawkinsThe Third Chimpanzee by Jared DiamondThe Woman in the Dunes by Abe KoboEvolution vs. Creationism by Eugenie C. ScottThe Omnivore's Dilemma by Michael PollanI, Claudius by Robert GravesBreaking The Spell by Daniel C. DennettA Peace to End All Peace by David FromkinThe Time Traveler's Wife by Audrey NiffeneggerThe End of Faith by Sam HarrisEnder's Game by Orson Scott CardThe Curious Incident of the Dog in the Night-Time by Mark HaddonValue and Virtue in a Godless Universe by Erik J. WielenbergThe March by E. L DoctorowThe Ethical Brain by Michael GazzanigaFreethinkers: A History of American Secularism by Susan JacobyCollapse: How Societies Choose to Fail or Succeed by Jared DiamondThe Battle for God by Karen ArmstrongThe Future of Life by Edward O. WilsonWhat is Good? by A. C. GraylingCivilization and Its Enemies by Lee HarrisPale Blue Dot by Carl SaganHow We Believe: Science, Skepticism, and the Search for God by Michael ShermerLooking for Spinoza by Antonio DamasioLies and the Lying Liars Who Tell Them by Al FrankenThe Red Queen by Matt RidleyThe Blank Slate by Stephen PinkerUnweaving the Rainbow by Richard DawkinsAtheism: A Reader edited by S.T. JoshiGlobal Brain by Howard BloomThe Lucifer Principle by Howard BloomGuns, Germs and Steel by Jared DiamondThe Demon-Haunted World by Carl SaganBury My Heart at Wounded Knee by Dee BrownFuture Shock by Alvin Toffler

OTHER PAGES WORTH EXPLORING
Banned Book ListOur Amazon.com SalesMassimo Pigliucci Rationally SpeakingOnline Reading GroupTop 10 Atheism BooksFACTS Book Selections

Copyright © BookTalk.org 2002-2014. All rights reserved.
Website developed by MidnightCoder.ca
Display Pagerank